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Critical layers in accelerating two-layer flows 

By D O N A L D  B. A L T M A N  
Institute for Naval Oceanography, Stennis Space Center, MS 39529, USA 

(Received 13 May 1987 and in revised form 17 May 1988) 

A series of laboratory experiments on accelerating two-layer shear flows over 
topography is described. The mean flow reverses a t  the interface of the layers, forcing 
a critical layer to occur there. It is found that for a sufficiently thin interface, a slowly 
growing recirculating region, the ‘acceleration rotor ’, develops on the interfacial 
wave at mean-flow Richardson numbers of O(0.5) .  This, in turn, can induce a 
secondary dynamiral shear instability on the trailing edge of the wave. A single- 
mode, linear, two-layer numerical model reproduces many features of the 
acceleration rotor if mean-flow acceleration and bottom forcing are included. 
Velocity measurements are obtained from photographs using image processing 
software developed for the automated reading of particle-streak photographs. 
Typical results are shown. 

1. Introduction 
Understanding the varied mechanisms for momentum transfer in the interactions 

of internal gravity waves with mean flows is a topic of continuing interest in 
geophysical fluid mechanics. For example, field studies of lee waves by Armi (1978) 
and Stacey & Zedel (1986), laboratory work on critical layers by Thorpe (1981) and 
Koop & McGee (1983), along with theoretical studies by Fritts (1982) and others 
have demonstrated some of the widely varied phenomena associated with steady 
stratified flows over topography. Internal waves generated by such flows can break, 
either by convective instability (Haury, Briscoe & Orr 1979) or by dynamical 
instability (Thorpe 1981, figure 9), or can transfer their energy to the mean flow 
without obvious breaking (Thorpe 1981, figure 4). 

Although interactions of internal waves with steady shear flows are far from 
understood, studies of internal waves in accelerating shear flows show additional 
surprising behaviour. Thorpe (1978) has shown by experiments and numerical 
modelling that over 80% of the energy of an internal wave can be transferred to the 
accelerating mean flow before breaking occurs. His numerical results indicate that 
breaking in accelerating flows is delayed when compared with steady mean flows. 
Delayed in this sense means that a lower mean-flow Richardson number is reached 
before breaking occurs. Thorpe (1981), in his ray-tracing solutions for critical layers 
in accelerating flow, showed rays crossing owing to the acceleration. This has been 
investigated by Broutman (1984) who demonstrated instabilities due to ‘refractive 
convergence ’ in numerical models of accelerating shear flows. 

I n  contrast to the above work, which concentrates on constant-buoyancy- 
frequency accelerating flows, the present work is an experimental study of internal 
waves in two-layer accelerating flows. I n  the experiments, a new scenario for 
convective instability, the ‘acceleration rotor ’, will be investigated. This instability 
can occur at mean-flow Richardson numbers 0(0.5),  and is shown to be a result of 
mean shear acceler it t’ ion. 
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The paper is organized as follows. First, the experimental apparatus and technique 
are discussed. Then. in order to motivate the theory. an experiment showing the 
acceleration-rotor phenomenon is reviewed. Next, a simple two-layer, linear, single- 
mode model of the flow is developed and compared with steady-state, two-layer, 
linear theory and with the experiments. Features of the experiments not represented 
in the model, such as the finite thickness of the interface between layers are 
discussed. Finally, a summary of results is presented. 

An Appendix describes the software developed and used for the automated reading 
of streak photographs. 

2. Technique and experiments 
The experiments are performed in a tilting tank similar to, but larger than, that 

of Thorpe (1968). Tank dimensions are 30.5 x 30.5 x 503 cm Easily replaceable 
sinusoidal false bottoms allow changes of forcing amplitude (0.64 or 1.27 cm) and 
wavelength (25.0 and 50.0 em). A prototype experiment showed that sidewall effects 
extend approximately one half the distance to the centre of the tank. 

The tank is tilted using a counterweight arrangement with automotive shock 
absorbers to limit angular velocity. Nominal tilt is 3.4" or 4.7" repeatable to +0.03". 
Time to full tilt is 1.0 s repeatable to k 0 . l  s. 

The tank is filled with fresh water (p = l .OOOfO.OO1 g cmP3) and seawater (p = 

1.026+ 0.001 g ~ m - ~ ) ,  that has been filtered, temperature equilibrated, and degassed. 
Density profiles and fixed conductivity records are measured with a Precision 
Measurement Engineering? model 106 four-wire conductivity instrument, calibrated 
directly to water samples with a precision hydrometer. This instrument resolves 
conductivity to within 0.1% full scale with no appreciable drift during the course of 
an experiment. Spatial rcsolution is O(0.2 em) when samples are taken at 30 to 50 
Hz after 18 dB/octave analog filtering a t  the Nyquist frcqucncy. A typical density 
profile is shown in figure 1 .  

Flow visualization and velocity measurements are by means of particle-streak 
photography. The area visualized is approximately 65 x 30.5 cm just 'uphill' of the 
tank pivot. A central strip of the tank, 3.8 cm wide, is illuminated with quartz iodine 
movie lights for photographs. Photographs are taken with a Hasselblad 500EL using 
a Zeiss 80 mm f/2.8 lens. Exposure timing is digitally recorded to within 1 ms. 16 mm 
movies of the experiments served as a check on flow behaviour between streak 
photographs. A brief description of the velocity measurements can be found in the 
Appendix to  this paper. 

All experiments have the geometry and frame of reference shown in figure 2 .  Two- 
layer stratification is created, and an accelerating, two-layer shear flow with a critical 
layer a t  the interface is initiated when the tank is tilted. The mean flow observed is 
similar to that sketched. 

In total, thirteen runs of the experiment were performed to explore the efTects of 
varying the acceleration, bottom topography, interface thickness, and ratio of layer 
thicknesses on the behaviour of the critical-layer flow. The experiments are 
summarized in table 1. In the table, h is the wavelength of the bottom ripples, 0 is 
the tank tilt, y the ratio of upper to lower layer thicknesses, Fl a measure of lower 
layer acceleration, CT the steepnesn of the bottom ripples, S a measure of lower-layer 

t Precision Measurement Engineering, 732 S o r t h  Highway 101, Suite E, Encinitas. California 
9202.2 
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FIGURE 1. Density profile for experiment 11. 

FIGURE 2. Geometry of the experiments (after Thorpe 1981). 

depth, and v i / q  an inverse measure of interface thickness. Non-dimensional 
quantities are defined in the next section. 

In  order to clarify subsequent discussion, a typical experiment, number I1 of table 1 
will now be discussed. Photographs are shown in figure 3. The measured density 
profile for this experiment is that of figure 1. Photographs are taken approximately 
1.1 s apart with an exposure time of roughly 0.14 s. Frame numbers are counted from 
the start of the film. Tank tilt commences 0.04 s before the first frame. Photographs 
have been printed with the tilt removed. The interface between the two layers is 
delineated by a high density of particles clustered there. The horizontal line near the 
top of each frame is the intersection of the tank top with the rear wall. The slight 
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Experiment 

I 
I1 
I11 
I V  
V 
VI  a 
b 
V I I  a 
b 

VII I  a 
b 
TX 
X 
XI 
XI1 
XITT 

c 

4 c m )  
25.0 
25.0 
25.0 
25.0 
25.0 
25.0 
25.0 
25.0 
25.0 
25.0 
50.0 
50.0 
50.0 
25.0 
25.0 
25.0 
25.0 

B(degrees) y Fl( x 102) U 

4.7 
4.7 
4.7 
4.7t 
4.7t 
4.7 
4.7 
3.4 
3.4 
3.4 
4.6 
4.6 
4.6 
4.7 
4.1 
4.7 
4.7 

0.91 
1.67 
0.67 
1.09 
1.13 
1.13 
1.13 
1.44 
1.44 
1.44 
1.81 
1.81 
0.47 
1 .OO 
2.00 
1 .00 
0.50 

3.84 
5.07 
3.26 
4.25 
4.28 
4.29 
4.29 
3.45 
3.45 
3.45 
5.05 
5.05 
2.51 
3.97 
5.36 
4.01 
2.66 

0.32 
0.32 
0.32 
0.32 
0.32 
0.32 
0.32 
0.32 
0.32 
0.32 
0.08 
0.08 
0.08 
0.08 
0.16 
0.16 
0.16 

t Tilted initially, then righted. 

TABLE 1 .  Summary of experiments 

6 

3.61 
2.59 
4.13 
3.30 
3.24 
3.24 
3.24 
2.83 
2.83 
2.83 
1.26 
1.26 
2.40 
1.77 
2.35 
3.53 
4.71 

VilT 
8.55 x 10-3 

4.81 x 10-3 
2.33 x 

1.91 x 10-2 
1.38 x 
1.30 x 
3.66 x 10P 
1.57 x 
1.16 x 

4.76 x 
1.22 x 10-2 
2.04 x lo-’ 
4.95 x 10-2 
2.15 x 

6.79 x 10-3 

6.64 x 10-3 
2.05 x 10-3 

waviness of the streaks is due to a high-frequency - about 16 Hz - vibration in the 
truss supporting the tank. 

Elapsed time is denoted by 7. Ri is a measured mean flow Richardson number 
based on average velocities away from the interface and unperturbed interface 
thickness. These and other non-dimensional parameters are defined in the next 
section. 

In figure 3 ( b )  (7 = 15.0, Ri = 0.86) the lower layer is accelerating to the right and 
the upper layer to the left. The lower-layer flow is affected by the bottom, but the 
interface is as yet unperturbed. Rapid flow at the top of the tank is due to trapped 
air bubbles dislodged when the tank is tilted. 

Figures 3 (d ) and 3 (e) (7 = 20.5 and 23.3, Ri = 0.44 and 0.33) show the slow growth 
of a rotor region termed the acceleration rotor. It is characterized by slowly growing 
regions of closed streamlines at the interface that are phase-locked to the bottom 
topography. 

In figure 3( f )  (T = 26.1, Ri = 0.24) the acceleration rotor continues to grow. The 
flow is starting to separate from the bottom causing an effective phase shift and 
decrease in amplitude of the bottom forcing. The separation is strikingly similar to 
the cases studied by Buckles, Hanratty & Adrian (1984) and Zilker & Hanratty 
(1979), although in their experiments the mean flow was fully turbulent and was not 
accelerating. 

Figure 3 ( h )  (7 = 31.6, Ri = 0.16) shows the appearance of a secondary vortex a t  
X = $n to the right of each acceleration rotor. The two vortices interact in figure 3 ( i )  
(7 = 33.3). The secondary vortex has swung over the acceleration rotor and the 
interaction has resulted in a region of ‘cottony’ texture. This is due to three- 
dimensional turbulent fluctuations in index of refraction sufficiently rapid compared 
with the shutter opening to cause a blurring of the images of individual particles. 
Measurements with a fixed conductivity probe along the centreline of the tank 
during some experiments confirm the presence here of wide-band fluctuations, 
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FTOCRE 3. Experiment 11. Pictures, with exposure times of approximately 0.25 s, are taken at T 

( K i )  of ( a )  13.177 (1.30), ( b )  14.971 (0.86), ( c )  17.743 (0.66), ( d )  20.519 (0.44), ( e )  23.280 (0.33): 
(f’) 26.071 (0.24). ( 9 )  28.828 (0.18), ( k )  31.584 (0.16), ( i )  33.300 (h’/A), ( j )  36.087 (K/A),  ( k )  38.887 
(h’/A). ( I )  41.713 (IG/A). 

although the apparent extent of the region may be in part an artifact of sidewall 
effects. 

In  figures 3 (j) and 3 ( I c )  (7 = 36.1 and 38.9) the turbulent region spreads, involving 
the entire interfacial region, and in figure 3(1) (7 = 41.7) the turbulent region seems 
fairly uniform in the x-direction. Puffs of the dense, particle-rich, fluid have been 
ejected into the upper layer. a phenomenon common to many experiments. 
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A number of distinctive features of the acceleration rotors are to be noted. 
( a )  Their spacing is that of the bottom ripples. 
( b )  They appear a t  a value of Ri when the mean flow, were it not accelerating, is 

dynamically stable according to Miles-Howard (1964) theory. Dynamical instability 
is defined as the existence of an exponentially growing root of the linearized 
equations of motion in the presence of infinitesimal perturbations. Thorpe (19734  
found in similar experiments without forcing that mean flow acceleration delayed the 
onset of dynamical instability to lower Ri than expected, owing to the time necded 
for perturbations to grow to finite size. 

(c) Their growth is quite slow. The acceleration rotors grow to full size in non- 
dimensional time AT M 11 while a Kelvin-Helmholtz vortex (figure 5) grows to the 
same size in AT M 4. 

( d )  If one scales typical velocities from the streaks a t  the periphery of an 
acceleration rotor. a given particle completes 3 to 5 circuits over the time that elapses 
between the appearance of the acceleration rotors and the onset of three-dimensional 
turbulence. 

(e) Streamlines, as indicated by particle streaks, are phase-shifted from the 
bottom to the interface, indicating an upward flux of horizontal momentum there, 
and in the absence of significant dissipation indicating that the interfacial waves are 
time dependent. One can view this momentum flux as additional drag on the flow due 
to the corrugations in the bottom. The growing interfacial waves are thus ‘wave 
drag’ felt by the bottom. 

The growth rate in dynamical shear instability depends upon the magnitude of the 
mean shear rather than on the acceleration. Experiments VIa  and V were contrived 
to determine whether the acceleration rotor is such an instability. 

In experiment VI  a the tank remains tilted to create a constant-acwderation shear 
flow, By contrast, the tank is righted in experiment V to remove mean-flow 
acceleration. Photographs of experiment V are shown in figure 4. The tank is righted 
in figure 4(c), just before the Richardson number drops below 0.25. According to 
Miles-Howard theory, the flow is unconditionally stable to infinitesimal per- 
turbations. Were this a dynamical instability caused by a finite-amplitude 
perturbation, the acceleration rotor would continue to grow a t  the same rate as just 
before the tank was righted, and this should be the same rate as for experiment 
V I  a. 

A comparison of the two experiments is shown in figure 5. Here the first data point 
of experiment V corresponds to figure 4(d) ,  the first photograph after the tank is 
righted. 

The acceleration rotor does grow, slightly, in figures 4(d)-4(f)  as its phase shift 
with respect to the bottom decreases. In  the next three frames, figures 4(g)-4(i), it 
shows no further growth, only an additional slight phase shift. The corresponding 
growth rate for experiment VIa is much higher although decreasing with time. The 
last data point plotted for experiment VIa corresponds to the onset of turbulence. 

The acceleration rotor occurs in both flows while Ri is too high for linear dynamical 
instability. This suggests that  i t  is not a dynamical instability, but rather a 
convective one. Once the rotor is set up, its growth rate differs depending on whether 
or not acceleration is present, in further disagreement with Kelvin-Helmholtz 
theory. 

The acceleration rotor is not a candidate for Holmboe instability since there is not 
the necessary wide separation of velocity- and density-gradient lengthscales a t  the 
interface. In  a tilting tank in the absence of viscous dissipation, density and velocity 
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FIGURE 4. Experiment V. Pictures, with exposure times of approximately 0.14s. are taken at 
7 (Ri)  of ( a )  18.551 (0.36), ( b )  20.932 (0.29), ( c )  23.716 (0.29), ( d )  26.126 (0.29), ( e )  28.909 (0.29), 
(f) 31.331 (0.26), (9) 33.759 (0.27), (h)  36.181 (0.25), ( i )  38.591 (0.27). 

profiles are geometrically similar. If one includes viscosity, there is a possibility that 
the velocity lengthscale will be greater-than that of the density. Thorpe ( 1 9 7 3 ~ )  
examines this in detail and gives an expression for calculating the disparity of 
lengthscales with time : 

r) 
LI 

1 + [ 1 + sp( v t ) + c ] ~  ’ & =  

where Q is the ratio of density- to velocity-gradient lengthscales, the density gradient 
goes like erfp(z-z,,), v is the dynamic viscosity, and t is time. Using typical values 
for interface thickness, O(3  cm), and elapsed time of experiment, O(15 s), one arrives 
at an estimate of Q of 0.9. This can be confirmed in the photographs, where no 
velocity gradient is apparent outside of the density gradient region. 

For comparison with acceleration rotor/secondary vortex behaviour, an experi- 
ment where Kelviri-Helmholtz instability dominates, experiment IX: is shown in 
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FIOVRF: F i .  Experiment V (0) vs. experiment V I a  (A). (a) Amplitude; (6) phase. 

figure 6. Xote that from figures 6 ( c )  to  6 ( d ) ,  the right-hand billow has moved by 
approximately its own diameter, 8.5 em, to the left. Using the mean measured values 
of U1 and U ,  between the frames. Kelvin-Helmholtz theory predicts a phase speed of 
-8.58 ern s-l, or a displacement of 8.9 ern to the left. Further, the spacing of the 
billows bears no relationship to the bottom, but rather to that predicted by 
Miles-Howard theory. Miles & Howard (1964) predict a most unstable wavenumber 
of 7.57SU, where S, is the shear-layer thickness. For an interface thickness of 2.8 em, 
as in this experiment, the spacing should be 20.4 em. The spacing between billows in 
figure 6 ( d )  varies from 21.4 to  25.5 em. 

In the next section, we shall develop a linear analytical model that exhibits the 
behaviour of the acceleration rotor. Following that the model will be compared to 
experiments. 

3. A linear model 
Assume an infinitely long tank having a frame of reference anchored to the bottom 

with the x-direction to the right and z upwards as shown in figure 2. The lower and 
upper layers are labelled 1 and 2 respectively. Mean layer thickness and mean-flow 
velocity of the lower/upper layers are hJh2 and UJU, respectively. Total tank depth 
is h. The ratio of layer thicknesses is given by the parameter 
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FIGURE 6. Experiment IX. Pictures, with exposure times of approximately 0.12 s, are taken at 
7 (Ri) of ( a )  16.635 (0.22), ( b )  18.487 (0.18), ( c )  20.331 (0.14), ( d )  22.147 (0.12), ( e )  23.992 (0.10), 
( f )  25.543 (0.09). 
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The flow within each layer is assumed to be two-dimensional and irrotational. So, the 
linearized, inviscid, Boussinesq equations of motion can then be written in terms of 
velocity potential rp as 

PI 
Vjtz  + U, Vjxx = - -=jx f o r j  = 1,2,  (3a,  b )  

j =  1,2, 

%xx + v j z z  = 0 j = 1,2.  (5% b )  
Here, p is density, t is time and subscripts t ,  x and z denote partial differentiation. 
Pressure n has been redefined to incorporate hydrostatic terms : 

ri = p j - p j g ( z - h )  f o r j  = 1,2,  (6) 

where p is static pressure and g the gravitational acceleration. 

and that pressure must match a t  the interface. Hence 
Boundary conditions are that there is no flow through the top, bottom or interface, 

yzz = 0, x = 0, (7 )  

131 = p 2 ,  z =  h, (10) 

where ~ ( x )  defines the bottom boundary and C(x, t )  the interface. 

x wth h , z  with h;l, and time with (kg’);, where g’ is the reduced gravity 
Bottom topography is described by 7 = r , ~ ~  eiks, We non-dimensionalize by scaling 

Further, we introduce the phase speed of interfacial free waves in infinite-depth 
fluid in the absence of shear co = (g ’ /k ) i ,  the steepness of bottom forcing q = T~ k ,  the 
scaled lower-layer depth S = kh,, the non-dimensional time 7, the non-dimensional 
interface perturbation amplitude 6, and the mean flow Froude number for each layer 
F, = L$/co. Equations (3)-(10) then can be written in terms of the non-dimensional 
velocity potential q5, as 

S2q5jxx +q5jzz = 0 f o r j  = 1,2 ,  (12a,  6 )  

and 

Sote  that the momentum equations (3) and (4) and the dynamic boundary condition 
(10) have been incorporated into (16). 

A single-mode solution and separation of variables are now imposed. Equations 
(12)-( 16) admit the solution 

(17) 

(18) 

[ = E(7) eiX. (19) 

q5, = [@,(T) cosh SZ+ ivF, sinhSZ] eiX, 

q52 = Q2(7) coshS(2-1-7) eiX, 
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The problem becomes that of solving for the coefficients Ql, Q2 and 3. After some 
algebra, it can be reduced to a single second-order ordinary differential equation 
describing the time evolution of the interface, 

Z-k i2p~F: &+p[ 1 -pF: + ~ K F ~ ]  E = @ [Sl - F:]. (20) 
8 1  

Here, we have introduced the notation 

S ,  = sinhS, 

K = coth S-y-l coth (d'y), 

/3 = [cothS+coth (Sy)]-l, 

p E coth ~ ? + y - ~  coth (dy), 

and d/d7{ } = {'}. We have also used the fact that  mass is conserved in the sealed 
tank, 

Fl = - y F  2 '  (21) 

Finally, the equation is transformed into a (accelerating) frame of reference 
travelling at the mean velocity of the two layers, 

a = E exp - i p ~  F1(7*) d7* , [ s :  1 
to vield 

This is a forced Schrodinger equation. For Fl constant analytic solutions exist as 
parabolic cylinder functions as noted by Thorpe (1969). For arbitrary Fl the equation 
is integrated numerically using the variable step algorithm of Bulirsch & Stoer 
(1966). A stream function, for contouring, is then derived from the numerical 
results. 

A number of features of the dynamics are now apparent. For 

Fl < [Lc-/?K2]-;, (24) 

the solution takes the form of two interfacial free waves travelling with the 
(instantaneous) phase speed 

(25) ci = /$[I - (p-pK2) F:];. 

The point F 1 -  - [Lc-pK2]-;, (26) 

where the homogeneous equation becomes elliptic, is the point of Kelvin-Helmholtz 
instability. Also, for IT > 0 there is a resonant forcing of one of the interfacial free 
waves by the bottom when 

(27) 1 - r u .  

If y = 1 ,  the resonant forcing and the Kelvin-Helmholtz instability coincide. 
Otherwise, the forced resonance precedes the instability for Fl increasing. In this 
case, the resonance point divides the hydraulically 'subcritical ' regime, where 
interfacial waves travel in both directions with respect to the bottom, from the 

For non-accelerating flow, the governing equation is (20) with E, E and Fl equal 
to 0. For the 'subcritical' case the interface is 180" out of phase with the bottom. 
Streamlines within the lower layer are 180" out of phase with the interface and have 
amplitudes increasing monotonically with height from negative near the bottom to 
positive near the interface. 

F - -; 

'supercritical ' one. .. . 
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For accelerating flow, the coefficient of the forcing term in ( 2 2 )  has a complex 
amplitude. It is this phase shift that  allows formation of closed-streamline regions, 
the acceleration rotors, in the solution. 

In physical terms, the lower-layer flow over sinusoidal bottom ripples sets up 
evanescent internal waves there. These force the two sinusoidal interfacial free waves 
which add to form a standing wave. In  a steady mean flow the equilibrium amplitude 
of the interface would be determined by the flow’s proximity to the point of resonant 
forcing, owing to mean flow acceleration, however, the wave does not achieve its 
equilibrium amplitude. As a result it is phase-shifted from the bottom, allowing a net 
vertical energy flux. The passage of energy through the evanescent region into the 
interfacial wave is analogous to ‘tunnelling ’ in quantum mechanics. 

Thus, for accelerating flow, streamlines in the lower layer have a depth-dependent 
phase shift within the layer. As the interfacial wave grows, streamline amplitudes 
change correspondingly. But, so long as the interfacial wave is not a t  equilibrium 
amplitude, it maintains a phase shift with respect to  the bottom. 

The interfacial wave in turn forces evanescent internal waves in the upper layer. 
Since there is no sink for their energy, these waves exhibit no ‘tunnelling ’ and their 
streamlines have an attenuating amplitude but no depth-dependent phase shift 
within the layer. 

Another physical mechanism analogous to mean-flow acceleration in forming 
rotors in this model would be linear friction within each layer. In  this case, it would 
be the need for the interface to remain a t  constant amplitude in the presence of 
dissipation that would require a net energy flux from the bottom. There were no 
significant frictional effects observed away from the boundaries in the experiments. 

4. Comparison with experiments 
For subsequent analysis, data are obtained from the photographs as follows. The 

interface is defined to be the centre of the region of no motion in the unperturbed 
shear flow. The level of the interface can be read within 1 2  mm. Amplitudes of the 
interfacial perturbations are measured directly from the photos, where possible, 
reflecting the position of the interface as just defined. I n  cases where the interface is 
obscure, measurements are taken a t  the top of the dense layer of streaks. Phase 
measurements are taken by determining, by eye, the best fit to  the interface of a 
sinusoid of the amplitude and wavelength of the bottom. Phase is defined as positive 
in the upstream direction of the lower layer. Although more precise methods of fit 
exist, this one proved very easy to implement and quite satisfactory, albeit with 
large error bars for low-amplitude or double-vortex photos. 

For all of the experiments of table 1 ,  the analytical model was numerically 
integrated from near-zero initial conditions with the measured experimental 
parameters. The model’s behaviour is not sensitive to perturbations in the initial 
conditions. 

When started from zero, a time offset of the model’s interface growth from the 
experiments is observed. This is due presumably to the combined effects of tilting 
accelerations, finite tank length, flow separation from the bottom, and non-zero 
interface thickness, none of which are included in the model. The mean time offset 
is 4.56f 1.80 (one standard deviation) in 7. Where noted, results have been corrected 
for this mean offset. 

Once the model is started, output is obtained a t  times corresponding to the 
midpoint of each exposure. The stream function is calculated and contoured a t  
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equally spaced levels, the same for all plots. The calculated stream-function field is 
100 by 100 points; plot features smaller than the point spacing are artifacts of the 
contouring routine. 

A comparison of the analytical model, corrected for time offset, with experiment 
I1 is shown in figure 7. In  figure 7 ( c )  the recirculating region appears in the model. 
The exact time of its appearance is determined by the contour intervals selected. By 
figure 7 ( d ) ,  the model is beginning to fail. The experiment shows a marked 
‘ cuspiness ’ in the interface. The model, however, is constrained to a sinusoidal 
interface. As a consequence, non-physical jets are beginning to appear in the region 
of the acceleration rotor. Cuspiness does appear in interior streamlines of the lower 
layer and is due there to the sum of the linear perturbation field with the mean flow. 
Kote that streamlines near the interface show a tendency to shorten the leading edge 
of the sinusoid, where the acceleration rotor occurs, in agreement with the 
experiments. This asymmetry is pronounced in the next frame. Separation of the 
flow from the bottom as well as the thinning of the interface are not reflected in such 
a simple model, yet the phase shift of the interface with respect to the bottom is 
clear. 

By figure 7 ( e ) ,  the model is diverging from the experiment, presumably due to lack 
of harmonics in the assumed form of the solution. KO trace of the secondary vortices 
ever appears. 

Model behaviour is compared quantitatively with this experiment in figure 8. No 
time-offset correction has been applied. Although this is one of the poorest matches 
between the model and an experiment, agreement is still good. 

The model was run for all experiments in which the acceleration rotor evolved 
clearly in a constant-acceleration mean flow. For each experiment, initial interfacial 
wave growth rate is calculated from both the data and the model runs. Growth rate 
from the data is thc average growth in amplitude over the first two data points. 
Growth rate from the model is the average for the model a t  amplitudes corresponding 
to the same two data points. It should be noted that, despite mean-flow acceleration, 
initial growth rate was essentially constant for the data and only changed gradually 
for the model. Figure 9 compares the growth rate from the model against that  from 
the data. The straight line indicates a perfect fit. Four of the predicted growth rates 
did not match well for reasons that are not clear. The worst match is the case of figure 
7, so it is safe to conclude that the numerical model does a good job of predicting the 
initial growth of the acceleration rotor. 

When tilt is removed from the numerical model, the flow relaxes towards the 
steady-state solution. If the flow is in the Kelvin-Helmholtz regime, the interface 
amplitude continues to grow, with interface phase reflecting advection of the waves 
by the mean flow. Otherwise it finds a non-growing configuration, in agreement with 
experiment V. 

Since the model is incapable of reproducing t)he secondary vortex, an additional 
series of experiments was performed to understand its origin. Experiment XI,  shown 
in figure 10, was contrived to show the flow of the intermediate-density water a t  the 
interface. To this end, the interface was dyed white. 

Figure 10 ( d )  shows clear evidence of overturn in the acceleration-rotor region, 
both by the streaks (indicating instantaneous velocity) and the dye (indicating 
integrated velocity). Note that the acceleration rotors are mainly entraining 
intermediate-density water. Figure 10 ( f )  shows fully developed acceleration rotors 
as well as the resultant thinning of the ‘braid ’ region connecting them. Figure 10 ( 9 )  
shows the emergence of the secondary vortices spaced half-way between the 
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cn 
FIGURE 7 .  Experiment I1 compared with the linear model. The total stream function is contoured. 
Pictures. with exposure times of approximately 0.25 s, are taken at 7 of (a) 17.743, (b)  20.519, 
(c) 23.280. ( d )  26.071, (e) 28.828. ( . f )  31.584. 
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FIGVRE 10. Experiment XI. Pictures, taken with exposure times of approximately 0.12 s, are 
taken at  T (Ri)  of (a) 15.939 (0.37), (b) 18.593 (0.31), (c)  21.908 (0.26), ( d )  24.557 (0.22), (e) 27.197 
(0.18). ( f )  29.850 (0.14). ( 9 )  32.499 (O.l l ) ,  ( h )  34.485 (IV/A), ( i )  37.181 ( S / A ) ,  (j) 39.843 (N/A).  

acceleration rotors. The secondary vortices entrain the remainder of the dyed fluid, 
thinning the interface further. Figure 10 (h)  shows both sets of vortices grown to full 
size. Note that the secondary vortices have grown more rapidly than the primaries 
in figures lO(e)-lO(h). Also, while equally spaced in figure l O ( q ) ,  the secondaries, by 
figure 10 (h) ,  have moved to the right with respect to the primaries. This movement 
corresponds to a mean phase speed of 4.33 cm s-l; the Kelvin-Helmholtz dispersion 
relation predicts 4.12 cm s-'. The acceleration rotors move a t  about half this 
speed. 

Using the undisturbed interface thickness and measurements from photos, the 
Miles-Howard criterion predicts a most-unstable wavelength of 13.5 cm a t  the time 
of figure l O ( f ) .  The mean-flow Richardson number in figure lO(g). whcrc thc 
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FIGURE 11. Experiment 11, Richardson number vs. lower-layer Froude number (proportional to  
time). The solid line is calculated using the initial interface t.hickness. The dott,ed line is calculated 
using the interface t.hickness measured between acceleration rotors. The dashed line is calculated 
assuming uniform thinning of the interface. 

secondary vortices first appear, is 0.08 when one allows for thinning of the interface 
as in figure 11. Thorpe (1973a) examines vortex spacing us. Richardson number for 
Kelvin-Helmholtz vortices. His figure 3 shows that for Ri = 0.08 the mean value of 
s is 0.48k0.04, where s is defined as the ratio of maximum billow height to 
disturbance wavelength. The height of the fully-developed billows of figure 10 ( h )  is 
about 6.25 cm, yielding s = 0.46, in agreement with Thorpe’s findings. 

Thus, the secondary vortices, by their higher growth rate, by their phase speed, 
and by their ratio of maximum diameter to most-unstable wavenumber are 
consistent with Kelvin-Helmholtz billows. The degree of thinning of the interface 
braid region is shown in figure 1 1 ,  based on the data of experiment 11. Three lines are 
plotted. The solid line is the estimated mean-flow Richardson number using a linear 
gradient approximation for velocity and density across the interface, 

where E; is obtained by the velocity measurements outlined in the Appendix and 
Ti is the thickness of the unperturbed interface. The dotted line is Ri based on the 
measured local interface thickness, 71, in the thinned region between acceleration 
rotors, rather than on Ti. The dashed line is Ri calculated assuming a uniform 
thinning of T, by stretching it into a sinusoid of the measured perturbation amplitude. 
Note that there has been a significant local reduction in Ri due to the thinning of the 
interface by the acceleration rotors. 

In his study of Woods’ 1968 photos, Thorpe (1973 b )  suggests that  secondary shear 
instabilities often occur a t  the crest or trough of the primary wave, where the total 
shear is a maximum. This is the case in experiments I-VII, having high-amplitude 

15-2 
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FIGITRE 12. The distribution of phenomena for all two-layer experiments. The ordinate is the 
acceleration of the mean flow. The abscissa is a ratio of forcing amplitude (ri) to interface thickness 
(T,) .  

forcing. However, the appearance of the billow in the minimum-shear area of 
experiment XI suggests thinning of the interface as the dominant mechanism for 
local Ri reduction in this case. The interaction of the acceleration rotors and 
secondary vortices agrees qualitatively with the numerical calculations of Chow 
(1979, figure 4.3.2), which is a study of the interactions of adjacent Kelvin-Helmholtz 
vortices. 

The question of when one expects to see the acceleration rotor remains. Figure 12 
summarizes the results of the experiments. The phenomena observed are broken 
down into three classes : Kelvin-Helmholtz-like, acceleration rotor, and continuous. 
The latter refers to the critical layer in a constant-buoyancy fluid as examined by 
Thorpe (1981). 

The horizontal axis of this figure is contrived to give some measure of the thickness 
of the interface region. The initial interface thickness, q, is normalized by the 
amplitude of the wave generated by the bottom forcing, qi, exponentially attenuated 
to the value felt a t  the unperturbed interface, qi = q,, e-$. Thus, moving to the left on 
this axis indicates interface thickness increasing compared with the amplitude of 
internal wave forcing. Moving upwards on the vertical axis indicates increasing 
mean-flow acceleration. 

Three tentative regimes emerge from this figure. The region in which the 
acceleration rotor dominates is bounded to  the left by the ‘ continuous ’ region ; for 
a given value of PI, as the interface thickens the critical layer eventually behaves as 
if it is embedded in a constant-buoyancy region. The ‘continuous’ region curves over 
the acceleration rotor region, an unexpected result which bears further study. 

The region below the acceleration rotor regime is dominated by Kelvin-Helmholtz 
instability. Decreasing for a given q i / q  decreases the amplitude of the forcing 
term in (23), allowing Kelvin-Helmholtz instability to dominate. This boundary is 
quite tentative but appears to rise with increasing q i /q .  
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5. Conclusions 
This work has examined a new scenario for instability, the acceleration rotor, 

occurring a t  the critical layer in accelerating two-layer flows. It is characterized by a 
rotor region a t  the interface that extracts energy from the incident internal wave 
field and stays approximately phase-locked to that field. The acceleration rotor can 
occur a t  mean-flow Richardson numbers of order 0.5. Acceleration as well as shear 
are necessary for its initiation. However, once the rotor is initiated, it appears to be 
quasi-stable when acceleration is removed. 

The acceleration rotor can be analytically modelled by a linear, inviscid, 
irrotational, two-layer, single-mode system. Such a model, while by no means 
complete, is in good qualitative agreement with observed amplitudes, phases, and 
growth rates of the acceleration rotor in its early stages. Later development of the 
acceleration rotor, as well as secondary shear instabilities, depend on higher-order 
terms in the momentum equations than are included here. 

Secondary vortices arising in some experiments appear to be Miles-Howard- type 
shear instabilities. Their location in the flow is the result of a trade-off of mechanisms 
that cause a local reduction in Ri. Two mechanisms identified here are modulation 
of the mean shear by the interfacial waves and local thinning of the interface due to 
fluid entrainment by the acceleration rotor. 

An image processing system which allows for the automatic reading of streaks 
from photographs has been used to obtain velocity measurements. The system is 
designed to use standard low-cost hardware. The software is designed to be portable, 
being written in Fortran 77. It is menu-driven, highly modular, and easily modified. 
Velocity measurements of modest accuracy ( + l o % )  can be obtained from a 
photograph in roughly one hour of operator time. 

The author gratefully acknowledges the help of R.  E. Hall, W. K. Melville, and 
J. W. Miles. Many helpful suggestions were made by anonymous reviewers. Plotting 
software was provided by R.  L. Parker. Illustrations were prepared with the help 
of D. Betts, W. Call, D. Menegus and P. M. Kimber. This work was supported by 
N. S. F. grants OCE 80-09461, OCE 81-17539, and OCE 82-40404. Support during 
manuscript preparation was by NSERC and INO. 

Appendix. Velocity measurements 
An automated system for reading particle-streak photographs, developed as part 

of this work, was used on a representative photograph to obtain velocity 
measurements within the critical layer. Since the first-order behaviour of the 
acceleration rotor turned out to  be explicable by other measurements, these velocity 
measurements were used only for the Richardson-number values of figure 11. 

A typical photo, frame 12 of experiment VIa, is shown in figure 13. It was chosen 
for the range of streak density : relatively high a t  the interface, moderate in the lower 
layer and sparse in the upper layer. Also, the lower-layer streaks in the central 
illuminated strip are noticeably brighter than those closer to the camera or farther 
from it. Visible in the photo are six small cross-shaped black marks on white 
background, applied to  the rear glass of the tank in three equally spaced vertical 
columns. Six corresponding marks are barely visible on the front glass of the tank. 
These are ‘fiducial marks’, used to register the image coordinate system to ‘real 
world ’ coordinates and to check the accuracy of geometrical corrections. 



448 

(4 

D. B. Altrnan 

FIGURE 13. A frame of experiment VIa. ( a )  A s  photographed, ( h )  digitized to  1060 x 512 pixels 
and displayed as a two-toned plot. 

The digitized image displayed in a two-tone plot is shown in figure 13(b). Note 
traces of the three upper rear fiducial marks. After simple pixel-level processing; 
nonlinear int,ensity mapping, first-differencing, and clipping to positive values, 
streaks in the interface region emerge. This can be seen in figure 14(a). Streaks not 
in the brightly lit region tend to be broken up by the processing. 

At this point, pixels are automatically connected into ‘candidate ’ streaks using a 
recursive forward-backward table searching algorithm. The reduction in data points 
by a factor of lo3 facilitates subsequent processing. Figures 14(b)  shows the 
connected candidate streaks of figure 14 ( a )  after preliminary filtering. The upper 
edge of the tank and parts of the rippled bottom are still evident. A number of long 
streaks at  the interface are the result of overlapped streaks in bhe digitized image. 
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FIGURE 14. ( a )  The image of‘ figure 13(0) after pixel-level filtering; ( b )  candidate streaks read 
from the image. 

Some streaks in the lower level have been broken into short segments. These are 
marginal contrast streaks from outside the illuminated strip. 

Next the picture is filtered with an interactive editor. The filtering scheme applied 
is ad hoe, and is an attempt to crudely duplicate human reasoning. Streaks that differ 
significantly from their neighbours, either in length or direction, are questionable. 
So,  a region is outlined and statistics taken to determine ‘typical’ streaks within it. 
Outliers are discarded. In  the interface region, streaks much longer than their 
immediate neighbours are discarded, being most probably overlapped streaks. 
Between 10 and 20 streaks were ‘manually ’ discarded by comparison of the plot with 
the photo. The whole interactive process took about one hour real-time and resulted 
in figure 15 ( a ) .  It must be stressed that although determining suitable statistical 
filters is a time-consuming step, once performed on one frame of a series it can 
subsequently be automatically applied to other statistically similar frames, cutting 
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FIGURE 15. ( a )  Candidate streaks after streak-level filtering ; ( b )  calibrated velocities after 
geometrical corrections. 

down on the time expended per frame. The final ‘manual’ step of comparison with 
the photo takes about ten minutes per frame and is optional. 

Geometrical corrections are applied to the streaks of figure 15(a) to yield the 
calibrated velocities of figure 15(b).  The lengthscale of velocity has been adjusted to 
facilitate comparison with the original photo. At this point, an error estimate is 
made. Subsets of fiducial marks are used to calculate the transformation to real- 
world coordinates and corrections for refraction and perspective applied to the 
unused fiducials. The r.m.s. error of location derived when the corrections are applied 
is 1.7 mm. This is an estimate of all remaining errors and distortions not explicitly 
corrected. So, the velocity measurements are located within + 2  mm in x and y. A 
rough estimate of accuracy of the measurements, obtained from statistical scatter 
in simpler analytically tractable flows is f10%. The total number of velocity 
measurements obtained is 229. 
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